PROSPECTIVE TEACHERS’ CONCEPTIONS of PROOF

Abstract

What types of mathematical justifications do pre-service elementary teachers find convincing? To investigate this question, a task-based interview which was designed to elicit arguments of what students find convincing was administered to two female students who were enrolled in a geometry course at a large Midwestern university. These arguments were categorized according to the proof schemes crafted by analyzing different studies dealing with proof. A qualitative analysis of the data revealed that these two pre-service elementary teachers have difficulties in following or constructing formally presented deductive arguments, in understanding how they differ from inductive arguments, as well as holding explicit misconceptions about proving (or disproving) statements such as: “a couple of examples constitute proof or one counterexample is not sufficient to disprove a statement.”

Keywords: Deductive reasoning, Misconceptions, Proofs, Pre-service teachers

ÖZGRETEN ADAYLARININ MATEMATİKSEL İSPAT ALGILARI

Özet

1 Arş. Gör. Dr., GOP Üniversitesi, İlköğretim Bölümü Matematik Öğretmenliği ABD., zulfiye.zeybek@gop.edu.tr
INTRODUCTION

It is difficult to overstate the importance of proofs in mathematics. If you have a conjecture, the only way that you can be completely sure that it is true is by presenting a valid mathematical proof. However, the mathematics education community worldwide is facing the challenge of improving students’ abilities to prove and to reason mathematically at all grade levels. Despite the fundamental role that proof and refutation play in mathematical inquiry (Lakatos, 1976) and the growing appreciation of the importance of these concepts in students’ mathematical education (Hanna, 2000; Reid, 2002), students hold various misconceptions not only about proof, but also about refutation.

Several studies have reported that formal deduction among students who have studied secondary school geometry is nearly absent (Burger & Shaughnessy, 1986; Chazan, 1993; Dreyfus, 1999). Many students accept inductive arguments as valid mathematical proof (Chazan, 1993; Martin & Harel, 1989) or they fail to recognize that using a larger set of examples still does not constitute proof (Knuth, Choppin, & Bieda, 2009). In addition, students have difficulty in understanding that a valid proof confers the universal truth of a general statement, thus mathematical proof requires no further empirical verification (Chazan, 1993; Fischbein, 1982; Martin & Harel, 1989). Some students believe that counterexamples do not really refute, instead they tend to treat valid counterexamples to general statements as exceptions that do not really affect the truth of the statements (Balacheff, 1988). Similarly, Simon and Blume (1996) show that many students think that giving one example is not enough to refute an argument.

Despite students’ current lack of knowledge, as well as interest, in proof and proving, the topic is central to mathematics, so it should be a key component of mathematics education (Bell, 1979; Hanna, 2000; Martin & Harel, 1989). Not only is proof at the heart of mathematical practice; it is an essential tool for promoting mathematical understanding (Hanna, 2000; Knuth, 2002; Martin & Harel, 1989). Stylianides (2007) has shown that young children can make legitimate mathematical arguments and even formal arguments that count as proof. He claims that proof should be part of students’ mathematical experiences even in early elementary grades (Stylianides, 2007). Thus, calls for improvement in mathematics education in the U.S. have increasingly emphasized the importance of proof and reasoning by recommending that reasoning and proof should be a part of the mathematics curriculum at all levels from pre-kindergarten through grade 12 (NCTM, 2000).

The purpose of this paper is to describe pre-service elementary teachers’ attempts to construct proofs and also to examine different arguments regarding proofs in order to better understand their conceptions of proof. The following research questions guided the study:

1. How do pre-service elementary teachers support claims, warrants, and backings as elements of their arguments?
2. What are pre-service elementary teachers’ conceptions of proof?

The Framework

Various studies that include a description of proof schema ideas at both pre-college and college level are evaluated with an effort to craft the framework used in this study (see Table 1). Hanna
Prospective Teachers’ Conceptions of Proof

(1989) argues that proofs can have different degrees of validity and still gain the same degree of acceptance. To document different types of mathematical justification attempted by each participant, mathematical arguments constructed to examine pre-service teachers’ conception of proof are assessed according to a hierarchy of levels of mathematical justification explained in the framework.

While many studies have focused primarily on distinctions between the inductive and deductive justifications (Chazan, 1993; Martin & Harel, 1989; Morris, 2002), some researchers have posed questions such as: What might make one example or empirical justification stronger than another? As a result, they have divided inductive and deductive justifications into further subcategories (Balcheff, 1988; Harel & Sowder, 2007; Quinn, 2009; Simon & Blume, 1996).

Bell (1976) defines three stages of justification – stage 1 (abstraction), in which patterns or relationships can be recognized, extended and described, but there is no attempt to explain, justify or deduce them; to stage 3 (proof), in which an informal, but acceptably complete, deductive argument or a full empirical check of the set of possible cases is given.

Simon and Blume (1996) categorize justification into five levels from level 0, in which students do not address justification, to level 4, in which students are able to use deductive justification. Quinn (2009) adapts the hierarchy that Simon and Blume (1996) developed to document students’ progress regarding mathematical tasks. She not only adapts the hierarchy but also inserts level 3B, in which students not only use examples as proofs but also look for counterexamples, cases of examples, or extreme examples as ways to determine whether or not the pattern will continue, based on her students’ level of understanding (Quinn, 2009).

The taxonomy of proof scheme from Harel and Sowder (1998) and later revisited by Harel (2007), is a fundamental framework for research on students’ conceptions of proof. Harel and Sowder’s framework encapsulates the major categories included in other taxonomies and proposes further sub-categories. However, it is evidenced in the literature that some students may not even need to provide a justification, they may fail to produce a deductive argument even if they start with some deductions (Quinn, 2009), or they may use a particular example – generic example—to express their deductive reasoning (Balacheff, 1988; Simon & Blume, 1996).

This study draws literature on the proof schemes that comprise the conceptual framework (see Table 1.). Thus, the framework encapsulates the proof schemes used in the aforementioned studies. The framework outlines various strong background work, thus, provides a powerful as well as useful tool for an analytical assessment of PSTs’ conceptions.
Table 1

Taxonomies of Proof Scheme

<table>
<thead>
<tr>
<th>Categories</th>
<th>Characteristics of Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcategories</td>
<td>Characteristics of Subcategories</td>
</tr>
<tr>
<td>Level 0</td>
<td>Responses that do not address justification</td>
</tr>
<tr>
<td>Level 1: External Proof Scheme</td>
<td>Responses appeal to external authority</td>
</tr>
<tr>
<td>(1) Authoritarian proof</td>
<td>Depends on an authority</td>
</tr>
<tr>
<td>(2) Ritual proof</td>
<td>Depends on the appearance of the argument</td>
</tr>
<tr>
<td>(3) Non-referential symbolic</td>
<td>Depends on some symbolic manipulation</td>
</tr>
<tr>
<td>proof</td>
<td></td>
</tr>
<tr>
<td>Level 2: Naive Reasoning</td>
<td>Responses usually with incorrect conclusions. Although, provers use some deduction, the arguments start with an analogy or with something that provers remember hearing, often incorrectly.</td>
</tr>
<tr>
<td>Level 3: Empirical Proof Scheme</td>
<td>Responses appeal to empirical demonstrations, or rudimentary transformational frame</td>
</tr>
<tr>
<td>(1) Naïve Empiricism</td>
<td>An assertion is valid from a small number of cases</td>
</tr>
<tr>
<td>(2) Crucial Empiricism</td>
<td>An assertion is valid from strategically chosen cases of examples</td>
</tr>
<tr>
<td>(3) Perceptual Proof</td>
<td>An assertion is valid from inferences based on rudimentary mental images</td>
</tr>
<tr>
<td>Level 4: Generic Example</td>
<td>Responses expressed in terms of a particular instance</td>
</tr>
<tr>
<td>Level 5: Deductive Proof Scheme</td>
<td>Responses appeal to rigorous and logical reasoning</td>
</tr>
<tr>
<td>(1) Transformational</td>
<td>Involves goal-oriented operations on objects</td>
</tr>
<tr>
<td>proof scheme</td>
<td></td>
</tr>
<tr>
<td>(2) Modern Axiomatic</td>
<td>Involves statements that do not require justification</td>
</tr>
<tr>
<td>proof scheme</td>
<td></td>
</tr>
</tbody>
</table>

Method

Participants
Two pre-service elementary teachers (PSTs) --Sara and Dacey (pseudonyms)-- volunteered to participate in this study. Both of the PSTs had enrolled in a Geometry-content course designed for elementary majors at a large Mid-western university in the US. Both participants satisfied the course requirements and passed the course with a grade of B or above.

Data Sources

The study uses a qualitative approach, mainly participant classroom observation and task-based interviews to investigate pre-service elementary teachers’ conceptions of proof. Every class in which the PSTs were enrolled was audiotaped and notes were taken by the author of this study. Focusing on everyday classroom practices of the participants helped the author to analyze – from the viewpoint of students as well as that of instructors -- what we might consider as learning or teaching proofs.

Each PST was interviewed individually for about an hour in a semi-structured manner using an interview script consisting of the three phases described below. The interviews took place near the end of the semester, in each case. Thus, the interviewees were expected to have learned most of the course topics and have had some practice justifying different statements by the time the interviews took place.

Phase 1. During this phase of the interview, each PST was presented the written tasks A, B, and C described in the following section. They were asked to explain in their own words what the statements said, and to decide whether the statements were always, sometimes, or never true and how they would know. And then, they were asked to produce a justification in cases where they believed the statements to be true.

Phase 2. After letting the PSTs try to justify the statements by themselves first, the interviewer presented the student with four brief arguments, varying in terms of level of justification, one after the other, and asked to think out loud as they read each one, judge the correctness, and say to what extent each argument was convincing. If the participants concluded that one or all of the arguments were not a valid justification, they were asked to point out which part(s) were problematic.

Phase 3. Having seen and thought about all four arguments, one after the other, the PSTs were then given an opportunity to reread them all together and rethink their earlier decisions with an opportunity to change their minds. And then, they were provided “Always”, “Sometimes”, “Never” cards and asked to assign the appropriate card to each argument presented. For instance, if the participants thought that the conclusion derived from one of the arguments would always hold true then they needed to put an “Always” card on the argument.

The data collected consisted of the audiotaped interviews, the interviewer's notes and the students' work on the “proof” sheets provided during the interview.

Interview Tasks

The interview tasks were designed to provide, first, an indication of PSTs’ competence in constructing proofs, and then, an overview of their views as to what constituted a convincing proof. The interview tasks included three types of items (from familiar to unfamiliar) to probe PSTs’ views of proof from a variety of standpoints.
Task A. This task was adopted from the course textbook. Thus, it was expected that by this time of the year, the interviewees were familiar with it and could reproduce the proof on their own. The task appears on the sheet presented to the participants as following:

A kite is a quadrilateral with two distinct pairs of adjacent sides that are equal in length. Given the definition, justify whether or not the following statement is true. “**In a kite, one pair of opposite angles is the same.**”

Task B. The same structure as in Task A was used to construct Task B. This task was adopted from Chazan (1993), but it was modified such that four arguments, varying in terms of level of justification, were added to present to the participants. The task was stated as follows:

Justify whether or not the statement is true: “**In any triangle, a segment joining the midpoints of any two sides will be parallel to the third side.**”

Task C. Task C was a non-familiar case to the participants. Even though, how to find area was discussed in detail in the classes that the participants enrolled, they did not solve any questions like task C. Thus, it was expected that this task might be challenging for the participants. This task was adopted from Simon and Blume (1996). The task appears as follows:

Find the area of the figure below.

![Figure 1. Task C](image)

Arguments for interview tasks. The theoretical framework explained before (see Table 1) governed the choice of arguments included in both of task A and B. Arguments for task A and B were characterized as empirical, subdivided as Naïve Empiricist with a small number of cases (Argument 1) and Crucial Empiricism with an extended number of cases including non-particular cases (Argument 2), argument requiring concrete demonstration or explanation written in everyday style (Argument 3), and a deductive proof, written in a formal style (Argument 4). For task C, the following method was presented to the participants:

“If you take a piece of string and measure the whole outside of the area and then pull that into a shape like a rectangle, you can easily calculate the area of the figure.” Justify whether or not the above method will work to find the area of the figure.

Results

Sara’s Proof Scheme

When Sara was presented with task A, she attempted to dissect the kite into two triangles in order to use triangle congruency to justify the statement. However, because she drew the horizontal diagonal instead of vertical diagonal, she failed to proceed from there to justify the statement—one pair of opposite angles in a kite is congruent. Even though, she started to use some deduction such as congruent triangles that she remembered hearing from her class, she
failed to reproduce it correctly. Similarly, she attempted to use what she learned about parallel lines in her class to justify the statement in task B. However, she failed to proceed from using her previous knowledge to construct a justification. Thus, her proof scheme was coded as Level 2 (Naïve Reasoning) for both task A and B.

Even though Sara failed to construct a proof, she correctly distinguished the deductive arguments from the inductive arguments when she was presented the arguments for those tasks. Sara understands that a couple of examples do not qualify as proof. She was aware that the conclusion that was arrived at from direct measurements of specific cases was approximate and that the generalization, which was arrived at without examining every possible case might be highly probable but not certain. Additionally, Sara understands the role of justification in mathematics: that is, to provide an argument that holds for every case. She knows that providing examples will hold only for those specific examples and she chooses “Sometimes” for argument 1 and 2 and “Always” for argument 3 and 4. Thus, her proof scheme was coded as Level 5 in phase 2 and 3 for both tasks.

Dacey’s Proof Scheme

Dacey, on the other hand, did not attempt to reproduce the proof she learned in her class for the first task—task A. Instead, she tried to explain it in a way that made sense to her. Dacey understood what the statement was telling and what she was asked to justify in task A. However, she could not proceed to construct a proof using the definition provided. Indeed, she did not even attempt to justify the statement because, she claimed, it was intuitively explicit to her. Thus, her proof scheme for this task was coded as Level 0 based on the framework. When Dacey was presented task B and asked to decide whether or not the statement was correct, she quickly concluded that the statement was correct, because, as she explained, the instructor recently showed the same statement and justified why it was correct in the class. However, because Dacey did not understand why the statement was correct or how to justify that it was correct in class, she failed to reproduce the proof. Dacey remembered that the proof included corresponding angles, but she could not proceed from using corresponding angles to conclude that the statement is true. Her response for this task was coded as Level 2.

Dacey found arguments 3, 2 and 1 more convincing than arguments 4. She claimed that seeing actual measurements or illustrations were more convincing than providing a logical argument. She insistently claimed that arguments 4 were not convincing for her at all.

Task C was an unfamiliar case; none of the participants had experienced this type of task in their classrooms. Thus, both participants struggled with the task and neither of them could come up with a method to find the area of the figure presented. After they presented the method, their answers also differed. Even though Sara confirmed the method would work, after more thought she realized that there might be two rectangles with the same perimeter and different areas or vice versa. However, she also concluded that being able to refute argument (the method in this case) requires more than one counter example. Dacey, on the other hand, was certain that the method would work and she justified her conclusion by stating that if the outside of two shapes are equal so must the inside.

Conclusion and Discussion

The findings outline a mixed picture of what constitutes proof in the eyes of these two preservice elementary teachers. When asked to define proof, it was clear that the participant pre-
service teachers had some experience with proof and were using this to inform their judgments about what constituted a good proof. They had experience of seeing a proof being performed and were quoting these as examples of what was required. However, despite their experience of seeing proofs in their classrooms, both participants failed to produce a proof for task A and B. This result aligns with Senk’s (1989) argument about students’ van Hiele levels regarding proof. Senk (1989) concludes that the students at level 3 can understand and follow the deductive justifications; however, they should be at level 4 in order to perform the proof by themselves. In addition, Healy and Hoyles (2000) provide evidence that students are better at choosing correct mathematical proofs than at constructing them.

In this study, even though Sara failed to apply her understanding of logical necessity to construct a proof, she was aware of the fact that inductive conclusions as in Arguments 1 and 2 provide probable conclusions while, in deductive inference, the prover reaches a conclusion that is certain. Additionally, Sara exhibited different levels when she was asked to prove the statement by herself than when she was asked to evaluate different arguments constructed by others. Even though she failed to prove the statements, she recognized and selected the deductive arguments correctly.

Dacey, on the other hand, relied on examples as her primary means of justification for task A and B. She consistently justified the generalizations by stating that it worked for all the cases tested. She did not realize the limitations of such reasoning. Stylianides (2007) argues that considering empirical arguments as proof is a threat to students’ opportunities to learn how to prove a proposition. Thus, one can argue that Dacey might lead students to believe that two examples would qualify as proof in her future classroom. Balacheff (1988) distinguishes between two large categories of proofs that students produced -- pragmatic proofs and conceptual proofs. Pragmatic proofs are those having recourse to actual action or showings, and by contrast, conceptual proofs are those which do not involve action and rest on formulations of the properties in question and relations between them (p. 217). As in Balacheff’s definition, Dacey stated that actual action or showing was more convincing than the one which did not involve action.

This study reveals that the levels of mathematical justification of these two PSTs are not static. Rather, they demonstrated different levels on different tasks depending upon their familiarity with the tasks. Fischbein (1982) argues that students choose to believe in something that seems more natural to them, subjectively, intuitively as an intrinsic property of the object. Nothing in the direct experience of the student needs such an explanation and leads to intuition. It was clear that Dacey was intuitively convinced that the outside of the shape also determines the inside in Task C. Thus if the perimeters of two shapes are equal, then the areas should be equal as well, so the method should work.

Implications and Suggestions

This study reveals that the participant prospective teachers do not always see the need of justifying a statement if the statement is intuitively appealing to them. In addition, they referred the authority (the math teacher in this case) a couple of times to support their answers. Thus, it would be necessary to develop the shift of authority from teacher and textbook to whole class. A classroom environment where mathematical ideas not only constructed individually but also socially as students participate in meaningful activities (Cobb, Wood, &McNeal, 1992; Yackel
& Cobb, 1996) has the potential of generating mathematical justifications among prospective teachers.

I believe that a balance between visual reasoning and deductive reasoning seems to be a direction to pursue – discussing with students the role that examples play in proving statements in mathematics (Knuth, Chopin, & Bieda, 2009) while also creating learning opportunities for students to encounter both inductive and deductive proofs, so that students may develop not only a deeper understanding of proof but also a deeper understanding of the underlying reasons for using deductive proofs (Knuth, 2002).

If the goal is to help students develop a strong understanding of proof – especially in a deductive manner – teachers should assess students’ current knowledge (common difficulties or misconceptions) in order to help them gradually refine their knowledge (Harel & Sowder, 2007). The framework used in this study may be a useful tool for teachers for not only assessing students’ development in order to seek ways in which to help students gradually refine their perceptions; but also, examining their perceptions of the nature of proof.

REFERENCES

KNUTH, Eric J.; CHOPPIN, Jeffrey M.; BIEDA, Kristen N., (2009), “Examples and Beyond” Mathematics Teaching in the Middle School, Y.15 S.4, s. 206-211.

LAKATOS, Imre, (1976), Proofs and Refutations: The Logic of Mathematical Discovery, USA.

